
A Dynamic Programming Approach to
Reconstructing Building Interiors

Alex Flint, Christopher Mei, David Murray, and Ian Reid

Dept. Engineering Science
University of Oxford

Parks Road, Oxford, UK
{alexf,cmei,dwm,ian}@robots.ox.ac.uk

Abstract. A number of recent papers have investigated reconstruction
under Manhattan world assumption, in which surfaces in the world are
assumed to be aligned with one of three dominant directions [1–4]. In
this paper we present a dynamic programming solution to the reconstruc-
tion problem for “indoor” Manhattan worlds (a sub–class of Manhattan
worlds). Our algorithm deterministically finds the global optimum and
exhibits computational complexity linear in both model complexity and
image size. This is an important improvement over previous methods
that were either approximate [3] or exponential in model complexity [4].
We present results for a new dataset containing several hundred manually
annotated images, which are released in conjunction with this paper.

1 Introduction

In this paper we investigate the problem of reconstructing simple geometric
models from single images of indoor scenes. These scene models can be used
to distinguish objects from background in recognition tasks, or provide strong
global contextual cues about the observed scene (e.g. office spaces, bedrooms,
corridors, etc.). Point clouds provided by structure–from–motion algorithms are
often sparse and do not provide such strong indicators. Compared to a full dense
reconstruction, the approach is computationally more efficient and is less sensi-
tive to large texture–less regions typically encountered in indoor environments.

The past few years have seen considerable interest in the Manhattan world
assumption [1, 2, 4, 3, 5], in which each surface is assumed to have one of three
possible orientations. Making this assumption introduces regularities that can
improve the quality of the final reconstruction [3]. Several papers have also in-
vestigated indoor Manhattan models [4–6] (a sub–class of Manhattan models),
which consist of vertical walls extending between the floor and ceiling planes.
A surprisingly broad set of interesting environments can be modelled exactly or
approximately as indoor Manhattan scenes [5]. It is with this class of scenes that
this paper is concerned.

The present work describes a novel and highly efficient algorithm to obtain
models of indoor Manhattan scenes from single images using dynamic program-
ming. In contrast to point cloud reconstructions, our algorithm assigns semantic

2 Alex Flint, Christopher Mei, David Murray, and Ian Reid

labels such as “floor”, “wall”, or “ceiling”. We show that our method produces
superior results when compared to previous approaches. Furthermore, our al-
gorithm exhibits running time linear in both image size and model complexity
(number of corners), whereas all previous methods that we are aware of [4, 5]
are exponential in model complexity.

The remainder of the paper is organised as follows. Section 2 describes pre-
vious work in this area and section 3 outlines our approach. In section 4 we
pose the indoor Manhattan problem formally, then in section 5 we develop the
dynamic programming solution. We present experimental results in section 6,
including a comparison with previous methods. Concluding remarks are given
in the final section.

2 Background

Many researchers have investigated the problem of recovering polyhedral models
from line drawings. Huffman [7] detected impossible objects by discriminating
concave, convex, and occluding lines. Waltz [8] investigated a more general prob-
lem involving incomplete line drawings and spurious measurements. Sugihara [9]
proposed an algebraic approach to interpreting line drawings, while the “origami
world” of Kanade [10] utilised heuristics to reconstruct composites of shells and
sheets.

Hoiem et al. [11] and Saxena et al. [12] have investigated the single image
reconstruction problem from a machine learning perspective. Their approaches
assign pixel–wise orientation labels using appearance characteristics of outdoor
scenes. Hedau et al. [6] extend this to indoor scenes, though their work is limited
to rectangular box environments.

The work most closely related to our own is that of Lee et al. [4], which
showed that line segments can be combined to generate indoor Manhattan mod-
els. In place of their branch–and–bound algorithm, our system uses dynamic
programming to efficiently search all feasible indoor Manhattan models (rather
than just those generated by line segments). As a result we obtain more accurate
models, can reconstruct more complex environments, and obtain computation
times several orders of magnitude faster than their approach, as will be detailed
in Section 6.

Furukawa et al. [3] used the Manhattan world assumption for stereo recon-
struction. They make use of multiple calibrated views, and they search a different
class of models, so their approach is not comparable to ours.

Barinova et al. [13] suggested modelling outdoor scenes as a series of verti-
cal planes. Their models bear some similarity to ours but they cannot handle
occluding boundaries, and their EM inference algorithm is less efficient that our
dynamic programming approach.

Felzenszwalb and Veksler [14] applied dynamic programming to a class of
pixel labelling problems. Because they optimise directly in terms of pixel labels
their approach is unable to capture the geometric feasibility constraints that our
system utilises.

A Dynamic Programming Approach to Reconstructing Building Interiors 3

(a)

(b)

Fig. 1: (a) Three input images and the indoor Manhattan models we seek. Notice
how each image column intersects exactly one wall. (b) The mapping Hc→f

transfers points between the ceiling and floor.

3 Outline of Proposed Approach

Our goal is to reconstruct an indoor Manhattan model from a single image.
Three example images and the models we seek for them are shown in Figure 1a.
A perfectly uncluttered environment such as that shown in the third column of
Figure 1a could be represented exactly by an indoor Manhattan model, though
in general we expect to encounter clutter and our goal in such cases is to recover
the boundaries of the environment in spite of this distraction. That is, we aim
to completely ignore all objects within the room and reconstruct the bare room
boundaries, in contrast to most previous approaches that aim to reconstruct the
entire scene. This choice is due to our intention of using the models as input for
further reasoning.

The Manhattan world assumption states that world surfaces are oriented in
one of three mutually orthogonal directions [1]. The indoor Manhattan assump-
tion further states that the environment consists of a floor plane, a ceiling plane,
and a set of walls extending vertically between them [4]. Each wall therefore has
one of two possible orientations (ignoring sign), and each corner1 is either con-
cave, convex, or occluding, as depicted in Figure 3. Indoor Manhattan models
are interesting because they can represent many indoor environments approxi-
mately or exactly, yet they introduce regularities to the reconstruction problem
that makes possible a left–to–right decomposition of the scene, on which the
dynamic programming algorithm developed in this paper rests. Our approach
to reconstructing indoor Manhattan environments consists of the following five
steps:

1. Identify three dominant surface orientations. (Section 3.1)
2. Identify the floor and ceiling planes. (Section 3.2)

1 we use “corner” throughout this paper to refer to the intersection of two walls, which
appears as a line segment in the image

4 Alex Flint, Christopher Mei, David Murray, and Ian Reid

3. Rectify vertical lines. (Section 3.3)

4. Obtain weak orientation estimates. (Section 3.4)

5. Estimate the final model. (Sections 4 and 5)

3.1 Identifying dominant directions

We identify three dominant directions by estimating mutually orthogonal van-
ishing points in the image. Our approach is similar to Koseckà and Zhang [2], in
which k–means clustering provides an initial estimate that is refined using EM.
We assume that the vertical direction in the world corresponds to the vanish-
ing point with largest absolute y–coordinate, which we label vv. The other two
vanishing points are denoted vl and vr.

If the camera intrinsics are unknown then we construct the camera matrix
K from the detected vanishing points by assuming that the camera centre is
at the image centre and choosing a focal length and aspect ratio such that the
calibrated vanishing points are mutually orthogonal.

3.2 Identifying the floor and ceiling planes.

An indoor Manhattan scene has exactly one floor and one ceiling plane, both
with normal direction vv. It will be useful in the following sections to have
available the mapping Hc→f between the image locations of ceiling points and
the image locations of the floor points that are vertically below them (see Figure
1b). Hc→f is a planar homology with axis h = vl×vr and vertex vv [15] and can
be recovered given the image location of any pair of corresponding floor/ceiling
points (xf ,xc) as

Hc→f = I + µ
vvh

T

vv · h
, (1)

where µ =< vv,xc,xf ,xc × xf × h > is the characteristic cross ratio of Hc→f .

Although we do not have a priori any such pair (xf ,xc), we can recover
Hc→f using the following RANSAC algorithm. First, we sample one point x̂c

from the region above the horizon in the Canny edge map, then we sample a
second point x̂f collinear with the first and vv from the region below the horizon.

We compute the hypothesis map Ĥc→f as described above, which we then score

by the number of edge pixels that Ĥc→f maps onto other edge pixels (according
to the Canny edge map). After repeating this for a fixed number of iterations
we return the hypothesis with greatest score.

Many images contain either no view of the floor or no view of the ceiling. In
such cases Hc→f is unimportant since there are no corresponding points in the
image. If the best Hc→f output from the RANSAC process has a score below a
threshold kt then we set µ to a large value that will transfer all pixels outside
the image bounds. Hc→f will then have no impact on the estimated model.

A Dynamic Programming Approach to Reconstructing Building Interiors 5

3.3 Rectifying vertical lines

The algorithms presented in the remainder of this paper will be simplified if
vertical lines in the world appear vertical in the image. We therefore warp images
according to the homography

H =

 vv × e3
vv

vv × e3 × vv

 , e3 = [0, 0, 1]T . (2)

3.4 Obtaining weak orientation estimates

Our algorithm requires a pixel–wise surface orientation estimate to bootstrap
the search. Obtaining such estimates has been explored by several authors [4,
11, 12]. We adopt the simple and efficient line–sweep approach of Lee et al. [4],
which produces a partial labelling of the image in terms of the three Manhattan
surface orientation labels (corresponding to the three Manhattan orientations
in the image). We denote this orientation map o : Z2 → {l, r, v, ∅} where ∅
represents the case in which no label is assigned and l, r, and v correspond to
the three vanishing points {vl,vr,vv}.

Note that our algorithm is is not dependent on the manner in which o is
obtained; any method capable of estimating surface orientations from a single
image, including the work of Hoiem [11] or Saxena [12], could be used instead.

We generate three binary images Ba, a ∈ {l, r, v} such that Ba(x) = 1 if and
only if o(x) = a. We then compute the integral image for each Ba, which allows
us to count the number of pixels of a given orientation within any rectangular
sub–image in O(1) time. This representation expedites evaluation of the cost
function described later.

4 Formulation of reconstruction problem

Consider the indoor Manhattan scenes shown in Figure 1a. Despite the com-
plexity of the original images, the basic structure of the scene as depicted in the
bottom row is simple. In each case there is exactly one wall between any two
adjacent corners1, so any vertical line intersects at most one wall. This turns out
to be a general property of indoor Manhattan environments that arises because
the camera must be between the floor and ceiling planes. Any indoor Manhattan
scene can therefore be represented as a series of one or more wall segments in
order from left to right.

Given the warp performed in the Section 3.3, corners are guaranteed to ap-
pear vertical in the image, so can be specified simply by an image column.
Furthermore, given the mapping Hc→f from Section 3.2 the image location of
either the top or bottom end–point of a corner (i.e. the intersection of the wall
with the ceiling or floor respectively) is sufficient to specify both and thereby the
line segment representing that corner. Without loss of generality we choose to
represent corners by their upper end–point. A wall segment can then be specified

6 Alex Flint, Christopher Mei, David Murray, and Ian Reid

(a)

l r r l

(b)

?

(c)

Fig. 2: (a) The row/column indices ci, ci+1, ri, together with the vanishing
point index ai ∈ {l, r} are sufficient via the homology Hc→f to determine
the four vertices defining a wall. (b) An illustration of the model M =
{c1, (r1, a1), ..., c4, (r4, a4), c5}. (c) A partial model covering columns to c1 to c4
with several feasible (green dashed) and infeasible (red dashed) wall segments.

by its left and right corners, together with its associated vanishing point (which
must be either vl or vr), as illustrated in Figure 2a.

This leads to a simple and general parametrisation under which we represent
an indoor Manhattan model M as an alternating sequence of corners and walls
(c1,W1, c2,W2, ...,Wn−1, cn), ci < ci+1. Each corner ci is the column index at
which two walls meet, and each wall Wi = (ri, ai) comprises an orientation
ai ∈ {l, r}, which determines whether its vanishing point is vl or vr, and a
row index ri, at which its upper edge meets the corner to its left (see Figure
2b). Hence the upper–left corner of the ith wall is (ci, ri), which, together with
its vanishing point vai , fully specifies its location in the image. Clockwise from
top–left the vertices of the ith wall are

pi = [ci, ri, 1]T , qi = pi×vai×[1, 0,−ci+1]T , ri = Hc→fqi, si = Hc→fpi . (3)

A modelM generates for each pixel x a predicted surface orientation gM(x) ∈
{l, r, v} corresponding to one of the three vanishing points {vl,vr,vv}. We com-
pute gM by filling quads corresponding to each wall segment, then filling the
remaining area with the floor/ceiling label v.

Not all models M are physically realisable, but those that are not can be
discarded using simple tests on the locations of walls and vanishing points as
enumerated by Lee et al. [4]. The reader is referred to their paper for details;
the key result for our purposes is that a model is feasible if all of its corners
are feasible, and the feasibility of a corner is dependent only on the immediately
adjoining walls.

4.1 Formalisation

We are now ready to formalise the minimisation problem. Given an input image
of size W ×H and an initial orientation estimate o, the pixel–wise cost Cd(x, a)

A Dynamic Programming Approach to Reconstructing Building Interiors 7

measures the cost of assigning the label a ∈ {l, r, v} to pixel x. We adopt the
simple model,

Cd(x, a) =

{
0, if o(x) = a or o(x) = ∅
1, otherwise

. (4)

The cost for a model M consisting of n corners is then the sum over pixel–
wise costs,

C(M) = nλ+
∑
x∈I

Cd(x,M(x)) (5)

where λ is a constant and nλ is a regularisation term penalising over–complex
models. We seek the model with least–cost

M∗ = argmin
M

C(M) . (6)

where implicit in (5) is the restriction to labellings representing indoor Manhat-
tan models, since only such labellings can be represented as models M. Figure
1a shows optimal models M∗ for three input images.

5 Proposed algorithm

In this section we present a dynamic programming solution to the minimisation
problem posed in the previous section. We develop the algorithm conceptually
first, then formalise it later.

We have already seen that every indoor Manhattan scene can be represented
as a left–to–right sequence of wall segments, and every image column intersects
exactly one wall segment. As a result, the placement of each wall is “conditionally
independent” of the other walls given its left and right neighbours. For example,
Figure 2c shows a partial model as well as several wall segments that could be
appended to it. Some of the candidates are feasible (green dashes) and some are
not (red dashes); however, note that once the wall segment from c3 to c4 is fixed,
the feasibility of wall segments following c4 is independent of choices made for
wall segments prior to c3.

This leads to a decomposition of the problem into a series of sub–problems of
the form “find the minimum–cost partial model that terminates2 at x = (c, r)”.
To solve this we enumerate over all possible walls W that have top–right corner
at x, then for each we recursively solve the sub–problems for the partial model
terminating at each x′, where x′ ranges along the left edge of W . This recursive
process eventually reaches the left boundary of the image since x′ is always
strictly to the left of x, at which point the recursion terminates. As is standard in
dynamic programming approaches, the solution to each sub–problem is cached to
avoid redundant computation. To solve the complete minimisation (6) we simply
solve the sub–problems corresponding to each point on the right boundary of
the image.

2 A model “terminates” at the top–right corner of its right–most wall.

8 Alex Flint, Christopher Mei, David Murray, and Ian Reid

Fig. 3: Three models satisfying constraints 1–3 for the sub–problem fin(x, y, a, k).
Only one will satisfy the least–cost constraint.

We now formalise the dynamic programming algorithm. Let fin(x, y, a, k) be
the cost of a model M+ = {c1,W1, ...,Wk−1, ck} such that

1. ck = x (i.e. the model terminates at column x),
2. Wk−1 = (y, a) (i.e. the model terminates at row y with orientation a),
3. M+ is feasible, and
4. M+ has minimal cost among all such models.

We show in the additional material that if a model

M = {c1,W1, ...,Wk−1, ck} (7)

is a solution to the sub–problem fin(ck, rk, ak, k), then the the truncated model

M′ = {c1,W1, ...,Wk−2, ck−1} (8)

is a solution to the sub–problem fin(ck−1, rk−1, ak−1, k − 1). In light of this we
introduce the following recurrence relation:

fin(x, y, a, k) = min
x′<x, y′,a′

(
fin(x′, y′, a′, k − 1) + Cw

)
, (9)

where Cw is the cost of the wall W = (y′, a′), computed by summing Cd over
columns x′ to x. The minimisation (9) is performed subject to feasibility con-
straints, so for each x′ < x, only a subset of y–coordinates are considered. Since
a model must have zero or more corners and a model with right–most corner at
x = 0 does not span any part of the image, we have the boundary conditions

fin(x, y, a, k) =

{
0, if x = 0

∞, if x 6= 0 and k < 0
. (10)

Finally, the cost of the optimal model (6) is

C(M∗) = min
1≤y≤H
k≤K

a∈{l,r}

(
fin(W, y, a, k) + λk

)
. (11)

where K is a parameter specifying the maximum model complexity and λ is the
per–wall penalty.

A Dynamic Programming Approach to Reconstructing Building Interiors 9

We compute C(M∗) by recursively evaluating fin according to (9) until we
reach one of the boundary conditions (10). In line with standard dynamic pro-
gramming theory we cache each evaluation to avoid redundant computation. For
each cache entry we also store x′, y′, a′ corresponding to least–cost wall identified
when evaluating (9), which allows the desired modelM∗ to be reconstructed by
back–tracking once all evaluations are complete.

Complexity. Due to the caching scheme, (9) is evaluated at most once
for each unique set of parameters. There are 2WHK possible parameters and
the complexity of each evaluation is O(W 2H), since the minimisation in (9) is
over O(WH) terms and computing each marginal cost Cw requires O(W) addi-
tions3. The overall complexity of the basic algorithm is therefore O(W 3H2K) =
O(L5K) where L = max(W,H).

5.1 Auxiliary sub–problems

The basic algorithm described thus far involves minimising over all pixels to the
left of x for each pixel x, (i.e. the joint minimisation over x′ and y′ in (9)).
In the previous section we enforced feasibility by explicitly testing each (x′, y′)
and omitting any that would lead to an infeasible model from the minimisa-
tion (9). In this section we show that by introducing auxiliary sub–problems
that build feasibility into the core of the algorithm we can significantly reduce
computational complexity.

We introduce three new sub–problems fup, fdown, and fout. Each is identical
to fin except that constraint 2 is modified as follows:

fout appendingW =(y, a) toM+ would produce a feasible model.
fup rk−1 ≤ y (i.e. the right–most wall terminates above row y)
fdown rk−1 ≥ y (i.e. the right–most wall terminates below row y)
Consider first the sub–problem fout(x, y, a, k), and suppose that the right–

most wall in its solution is W ′. Now W ′ terminates either above row y, below row
y, or exactly at row y, which correspond respectively to the sub–problems fup,
fdown, and fin. We also have two choices of orientation, making six possibilities
in total, from which we select the one with least cost,

fout(x, y, a, k) = min
a′∈{l,r}

min


fup(x, y − 1, a′, k)

fin(x, y, a′, k)

fdown(x, y + 1, a′, k)

, (12)

where either or both of the fup and fdown terms are omitted if such a wall would
be infeasible.

Similarly, suppose that the least–cost model that terminates at (x, y) (i.e.
the solution to fin(x, y, a, k)) has right–most wall W ′. Now W ′ must have its
left edge at some column x′ < x, and the portion of the model to the left of x′

must be feasible when W ′ is appended. Hence we have

fin(x, y, a, k) = min
x′<x

(
fout(x

′, y′, a, k − 1) + CW

)
, (13)

3 here we use the integral images Bi

10 Alex Flint, Christopher Mei, David Murray, and Ian Reid

y

(x,y)

y

x

(a) (b)

fout
fdown

fup
fin

(c)

Fig. 4: (a) The bend introduced by rounding y′ to ŷ = by′ + 0.5c. (b) A line
from x to va with the distances d to nearby pixel centres (green dots). The
starred pixel is the first that satisfies d < ε. (c) A graph in which each node
represents a sub–problem and each edge is a dependence relation. Two columns
are expanded; other column are omitted for brevity. The green quad is a wall
corresponding to a particular pair of nodes in the graph.

where y′ is the y–coordinate at which the line through va and (x, y) meets
column x′ and Cw is the cost of the wall W ′ = (y′, a′) exactly as in (9). Note
that (13) consists of O(L) terms whereas in the previous section (9) consisted of
O(L2) terms.

Finally we may decompose the fup and fdown sub–problems each into two
cases,

fup(x, y, a, k) =

{
min

(
fin(·), fup(x, y − 1, a, k)

)
, if y ≥ 1

∞, otherwise
(14)

fdown(x, y, a, k) =

{
min

(
fin(·), fdown(x, y + 1, a, k)

)
, if y ≤ H

∞, otherwise
(15)

The dependencies between the sub–problems are illustrated as an evaluation
graph in Figure 4c.

5.2 From (L3K) to O(L2K)

Evaluating (13) remains an O(W) operation due to the minimisation over x′. In
this section we to reduce this to O(1).

Consider the sub–problem fin(x, y, a, k) as formulated in the previous sec-
tion. Evaluating fin is like walking along each column x − 1, x − 2, ..., 1 and
considering two possibilities at each step: insert a corner or continue walking.
The former corresponds to evaluating fout(x

′, y′, a, k−1)+Cw; that is, we insert
a wall between x′ and x with cost Cw, then find the optimal model that occu-
pies the remaining space to the left of x′. The latter corresponds to evaluating

A Dynamic Programming Approach to Reconstructing Building Interiors 11

fin(x′, y′, a, k) + Cw; that is, we find the best model that terminates at (x′, y′)
with orientation a and extend its right–most wall to (x, y). But y′ is computed
by intersecting the line from va to (x, y) with image column x′, so in general
y′ is not an integer. While it is sufficient to round y′ to the nearest integer
ŷ = by′ + 0.5c when evaluating fout, doing the same for fin would produce a
bend in the wall as shown in Figure 4a. In (13) we avoided this by evaluating fout
for all x′ < x, but this is unnecessarily wasteful. We now introduce a threshold
ε and allow ŷ to replace y′ whenever

|y′ − ŷ| < ε . (16)

When we encounter an image column satisfying (16) we evaluate fin as fol-
lows. W consider adding a corner at x′ by evaluating fout(x

′, y′, a, k − 1) + Cw

as in the previous section, then we consider the case that the wall continues
past column x′ by evaluating fin(x′, ŷ, a, k) + Cw, and we return the minimum
of the two values. At this point we need not consider any further columns to the
left of x′ since any such consideration are already captured in the evaluation of
fin(x′, ŷ, a, k). Hence rather than evaluating all x′ < x we need only walk as far
as the first x′ that satisfies (16), as shown in Figure 4b. The recurrence relation
for fin now becomes

fin(x, y, a, k) = min

{
minxp≤x′<x

(
fout(x

′, y′, a, k − 1) + Cw

)
fin(xp, yp), a, k − 1) + Cw

. (17)

where xp < x is the closest column to x satisfying (16) and yp is the row at that
column meets the line from (x, y) to va. Empirically we have found that even
for ε = 0.01 pixels, we always encounter some x′ satisfying (16) within 20 steps
from any start point.

Complexity. Evaluating each sub–problem is now an O(1) operation, so
the overall complexity of the algorithm is given by the total number of unique
sub–problems, which is

O(KL2) . (18)

6 Results

We tested our system on a dataset of 634 manually annotated images of indoor
scenes. To expedite annotation we collected video sequences and used structure–
from–motion software to recover camera poses, allowing us to project a manually
specified floor plan into each view.

In each experiment we computed the fraction of pixels for which the orienta-
tion predicted by the output modelM agreed with the ground truth orientation.
Unless otherwise specified, the parameter settings for the experiments below are
ε = 0.01, K = 7, m = 4, λ = 100. Image sizes were 640 × 480 pixels. We found
our algorithm to be robust to all of these parameter values, as the following
experiments show.

12 Alex Flint, Christopher Mei, David Murray, and Ian Reid

We compared our results with the branch–and–bound approach of Lee et
al. [4]. In 138 of the images (21.7% of the dataset), their method was unable to
estimate a building model as there was no appropriate pair of line segments with
which to initialise their approach. In a pixel–wise evaluation their approach was
able to correctly label 54.3% of pixels, while our approach obtained an accuracy
of 79.7%. Omitting the images for which their approach was unable to estimate
a building structure, their approach obtained 68.1% accuracy. We believe that
the difficulty of our dataset (many occluding objects, many images without a
view of both floor and ceiling) accounts for the significantly lower performance in
comparison to that quoted in [4]. Side–by–side comparisons with their approach
are included in additional material.

6.1 Failure Cases

Figure 6 shows four representative failure cases of our approach. In the top–
left panel the occlusion relationship between two walls is incorrectly estimated,
so the more distant wall is thought to be occluding the closer wall. This is
because the floor patch in the bottom centre of the image is missed in the initial
orientation estimate. In the top–right panel, too few line segments are detected
and the initial orientation estimate is very poor. The bottom–left panel shows
an example of a chair that is wrongly identified as part of a wall. The chair
is aligned with the wall behind it and this highlights the limitation of using
only line segments to estimate an initial orientation estimate. The bottom–right
panel shows how a deviation from the indoor Manhattan assumption causes an
incorrect model to be estimated. The exit sign represents a vertical surface that
does not extend from the the ceiling to the floor, which our approach is currently
unable to handle.

7 Discussion

We have shown that semantically meaningful models of indoor scenes can be
recovered efficiently for a range of Manhattan environments using dynamic pro-
gramming. Our approach is able to model complex scenes, which would be in-
tractable for previous methods that involved combinatorial searches in the space
of models. This work represents an important increment on the state–of–the art
both in terms of accuracy and efficiency.

An alternative approach might be to apply graph cuts to this problem. How-
ever, Kolmogorov and Zabih [16] showed that only regular functions (a subset
of sub–modular functions) can be minimised via graph cuts, and the cost (6)
is not regular because implicit in the minimisation is the hard constraint that
labellings must form an indoor Manhattan model, which induces complicated de-
pendencies between the pixels in each column. Even if an appropriate relaxation
of this constraint yielded a regular cost function, applying graph cuts would en-
tail using a technique such as α–expansion [16], which is both approximate and

A Dynamic Programming Approach to Reconstructing Building Interiors 13

Fig. 5: Models estimated by our algorithm. Each panel contains three images:
the original image, the initial orientation estimate, and the final model output
by our system. Best viewed in colour.

non–deterministic. In contrast, our approach is exact, deterministic, and highly
efficient.

Future work will investigate richer cues for obtaining the initial orientation
estimates as well as a probabilistic formulation of the cost function (4).

References

1. Coughlan, J., Yuille, A.: Manhattan world: compass direction from a single image
by bayesian inference. In: CVPR. Volume 2. (1999) 941–947 vol.2

Fig. 6: Failure cases of our system. Best viewed in colour.

14 Alex Flint, Christopher Mei, David Murray, and Ian Reid

10

100

1000

10000

100000

1e+06

0 1 2 3 4 5 6 7 8

T
im

e
(m

s)

Model complexity (number of corners, K)

Proposed algorithm
Branch and bound

(a)

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

A
cc

ur
ac

y

T
im

e
(s

)

Line-jump threshold

Time
Accuracy

(b)

Fig. 7: (a) Efficiency comparison with the branch–and–bound algorithm of Lee
et al. [4] (our implementation). Their approach scales exponentially with model
complexity whereas ours scales only linearly. (b) The line–jump parameter ε
trades off accuracy (diamonds) for computation time (crosses). Accuracy is
computed relative to the baseline ε = 0. Small values of ε achieve significant
speedup with no perceivable degradation in accuracy. Based on these results we
set ε = 0.01 in our remaining experiments.

2. Koseckà, J., Zhang, W.: Video compass. In: ECCV. Volume 2353 of Lecture Notes
in Computer Science., Springer (2002) 4: 476–490

3. Furukawa, Y., Curless, B., Seitz, S., Szeliski, R.: Manhattan-world stereo. CVPR
0 (2009) 1422–1429

4. Lee, D.C., Hebert, M., Kanade, T.: Geometric reasoning for single image structure
recovery. In: CVPR. (2009)

5. Flint, A., Mei, C., Reid, I., Murray, D.: Growing semantically meaningful models
for visual slam. In: CVPR. (2010)

6. Hedau, V., Hoiem, D., Forsyth, D.: Recovering the spatial layout of cluttered
rooms. In: ICCV. Volume 2. (2009)

7. Huffman, D.A.: Impossible objects as nonsense sentences. Machine Intelligence 6
(1971) 295–323

8. Waltz, D.L.: Generating semantic descriptions from drawings of scenes with shad-
ows. Technical report, MIT (1972)

9. Sugihara, K.: Mathematical structures of line drawings of polyhedrons. PAMI 4
(1982) 458 –469

10. Kanade, T.: A theory of origami world. Artificial Intelligence 13 (1980) 279–311
11. Hoiem, D., Efros, A.A., Hébert, M.: Geometric context from a single image. In:

ICCV. (2005) 654–661
12. Saxena, A., Sun, M., Ng, A.Y.: Make3d: Learning 3d scene structure from a single

still image. PAMI 31 (2009) 824–840
13. Barinova, O., Konushin, V., Yakubenko, A., Lee, K., Lim, H., Konushin, A.: Fast

automatic single-view 3-d reconstruction of urban scenes. In: ECCV. (2008) 100–
113

14. Felzenszwalb, D., Veksler, O.: Tiered scene labeling with dynamic programming.
In: CVPR. (2010)

15. Criminisi, A.: Accurate visual metrology from single and multiple uncalibrated
images. Springer-Verlag New York, Inc., New York, NY, USA (2001)

16. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph
cuts? PAMI (2002)

